Reconstructing under Group Actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing under Group Actions

We give a bound on the reconstructibility of an action G ֌ X in terms of the reconstructibility of a the action N ֌ X, where N is a normal subgroup of G, and the reconstructibility of the quotient G/N . We also show that if the action G ֌ X is locally finite, in the sense that every point is either in an orbit by itself or has finite stabilizer, then the reconstructibility of G ֌ X is at most t...

متن کامل

Reconstructing Group Actions

We give a general structure theory for reconstructing group actions on sets without any assumptions on the group, the action, or the set on which the group acts. Using certain ‘local data’ D from the action we build a group G(D) of the data and a space X (D) with an action of G(D) on X (D) that arise naturally from the data D. We use these to obtain an approximation to the original group G, the...

متن کامل

Reconstructing Simple Group Actions

Let G be a simple primitive subgroup of Sn, speciied in terms of a set of generating permutations. If jGj n 5 , eecient algorithms are presented that nd \the most natural permutation representation" of G. For example, if G is a classical group then we nd a suitable projective space underlying G. A number of related questions are considered. Our notion of \eeciency" takes into account many exist...

متن کامل

Reconstructing finite group actions and characters from subgroup information

Holroyd, F.C., Reconstructing finite group actions and characters from subgroup information, Discrete Mathematics 110 (1992) 283-287. A finite group G is said to be action reconstructible if, for any action of G on a finite set, the numbers of orbits under restriction to each subgroup always give enough information to reconstruct the action up to equivalence. G is character reconstructible if, ...

متن کامل

Equivalence Relations Invariant under Group Actions

We study, in an abstract context, equivalence relations which are invariant under group actions. More precisely, we fix a transformation group, and we study the orbital equivalence relations (i.e. orbit equivalence relations of normal subgroups) and a wider class of weakly orbital equivalence relations. For these sorts of relations we show (under some additional assumptions) that if each class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2006

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-006-0675-y